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We derive an effective Fokker-Planck equation for a nonlinear non-Markovian stochastic process us-
ing path-integral formalism. The effective Fokker-Planck equation of our approximation scheme is local
in state space and local in time, and its diffusion constant remains positive over the entire state space for
all noise correlation time. The mean first passage time (MFPT) and the stationary probability density
function (SPDF) for the case of a bistable potential driven by Ornstein-Uhlenbeck noise are computed.
The MFPT is compared with that of earlier theories and with the numerical simulation results. The
SPDF is compared with that of the results obtained through the matrix continued-fraction method. In-
teresting connections between the path-integral method and the functional-calculus approach to the

colored noise problem are brought out.

PACS number(s): 05.40.+j, 02.50.—r, 05.70.Ln

I. INTRODUCTION

The focus of this paper is on one of the most debated
problems in the field of stochastic physics—derivation of
an effective Fokker-Planck equation (EFPE) for a
colored-noise-driven stochastic differential equation [1].
The problem is to derive a Fokker-Planck type evolution
equation for the probability density function of the pro-
cess described by [2-4],

x(6)=f(x(£))+g(x (£))§(2) . (1)

In Eq. (1), f(x(¢)) and g(x (¢)) are in general nonlinear
functions of x(z), and &(¢) is the Ornstein-Uhlenbeck
noise with mean value zero and with correlation function
(EE())=(D/7)exp(—|t —t'| /7), where D is the
noise strength and 7 is the noise correlation time. If the
driving noise is Gaussian and 8-function correlated, the x
process is Markovian, and we have a Fokker-Planck
equation, i.e., an equation for the probability density of x
which is local in time and space. If the noise has finite
correlation time, x becomes a non-Markovian process
and its evolution equation is in general nonlocal both in
time and space [5]. This makes it difficult to get closed-
form exact formulas for the statistical quantities of in-
terest, especially the stationary probability density func-
tion (SPDF) and the mean first passage time (MFPT) of
the x process. An exact formal evolution equation for the
probability density function P(x,t) of x process can be
derived and it is a Kramer-Moyal series with the general
term of the form [6]

n—k

2 P(x,t)

Dn/2,,_n/241+m
ox

(n=2, m=0,0<k<n-—1).

]

D (x,0P (x,n=[[ D[ 1P[E1)]5(x —x(t))fotdt'ge_
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In order to derive an approximate Fokker-Planck type
equation, Sancho et al. truncated and did a partial
resummation of the exact formal non-Markovian evolu-
tion equation [7,8]. The resulting equation is called the
best Fokker-Planck equation (BFPE). However, it has
been criticized that it is not possible to identify all terms
in the above-mentioned Kramer-Moyal series at any
given order in the perturbation parameters and hence a
truncation is not possible [1,9,10]. Hanggi et al. then
proposed a state-independent diffusion constant, valid for
small D [11]. However, it has been shown that the
scheme of Hanggi et al. fails to reproduce the richness of
the non-Markovian features induced by the color of the
noise [12].

Before proceeding with the review of the literature fur-
ther, we simplify Eq. (1) as follows. Without loss of gen-
erality for the one-dimensional case, we consider only the
additive noise, i.e., we set g(x(¢)) to be 1. We rewrite
f(x(t)) as —V'(x (1)), i.e., negative gradient of the po-
tential V(x (z)). With these simplifications we henceforth
consider the equation

x(6)=—V"(x(2))+&() . (2)

By various methods, such as cumulant expansion
[13,14], Furutsu-Novikov’s technique [7,8], the projection
operator method [15], and the functional-calculus
method [16], one can derive equivalent formal evolution
equations for P(x,?) of Eq. (2). In the functional-calculus
notation it reads [7] as

OP(x,t) _ 0 . ..
“or 3 [—V'(x(2))P(x,t)]
aZ
+ D (x,t)P(x,1), 3)
dx
with
lt=¢'1/7 exp —ftV"(x(u))du . (4)
"
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In Eq. 4) ﬂ represent the path integral over &£(¢);
D [&(2)] is the measure for integration and P[£(¢)] is the
probability of occurrence of £(¢) realization. By invoking
the smallness of 7, Fox set V'’ (x (u))=V"(x(1)),0=u <t
[16]. This approximation converts the functional appear-
ing inside the path integral to be independent of the
paths, enabling a trivial path integration. Fox got at sta-
tionarity, Dg,(x)=D/[1+7V"(x)]. Dg.(x) remains
positive whenever V''(x) is positive, but becomes nega-
tive in the region where 7> — V" (x)”!. For the well-
discussed case of the bistable potential,
V(x)=x*/4—x2/2, Fox’s diffusion constant becomes
negative for 7>1 in a region —V(r—1)/3r=x
<+4+V(r—1)/37. The BFPE also shares with Fox’s
EFPE the anomaly of the negative diffusion constant.
However, in the case of BFPE Hannibal [17] has shown
that by imposing a regularity condition at infinity, it is al-
ways possible to single out a non-negative, though nonan-
alytic solution for the diffusion constant.

Similarly, Tsironis and Grigolini showed that by re-
moving the stationarity condition assumed by Fox one
gets a time-dependent diffusion constant free from the
negative diffusion constant anomaly for all x and 7.
Tsironis and Grigolini call this approximation a local
linearization theory (LLT) [18]. However for 7= 1, the
diffusion constant of LLT diverges to + o as t— o0 in
the region |x| <V/(r—1)/37. Hence the stationary prob-
ability  densit function of LLT vanishes for
|x| <V (r—1)/37, contradicting the matrix continued-
fraction results [19]. Further, it has been shown that the
MFPT computed by LLT coincides with that of Fox’s
EFPE in the region of validity of Fox’s EFPE and both
underestimate the MFPT computed by the matrix
continued-fraction method [19]. Der has proposed a
scheme based on operator cumulant approach which can
be used to improve the LLT result systematically [20].
However, explicit comparison of the MFPT for the bist-
able system with the simulation results has not been car-
ried out in Ref. [20]. The unified colored-noise approxi-
mation (UCNA) method of Jung and Hanggi proposes an
EFPE with a positive definite diffusion constant arrived
at by doing an adiabatic elimination in the Langevin
equation (1) [21]. The UCNA scheme gives good results
for the dynamics such as relaxation times and stationary
correlation [22,23]. With this, we finish the brief discus-
sion of the various EFPE’s proposed so far. It is in this
context we propose an EFPE in this paper. Our EFPE
not only overcomes the negative diffusion constant anom-
aly but also gives good predictions for the MFPT and
SPDF both in the small and large 7 range.

The paper is organized as follows. In Sec. II we derive
an EFPE using the path-integral method. Then we
categorize the various approximation schemes proposed
to solve nonlinear non-Markovian stochastic processes.
In Sec. III, the MFPT for the case of the bistable poten-
tial driven by Ornstein-Uhlenbeck noise is computed, and
the results are compared with that of earlier theories and
with the numerical simulation results. The SPDF of x is
computed in Sec. IV and is compared with that of matrix
continued-fraction results. In Sec. V, we bring out the in-
timate connection between the functional-calculus

method and the path-integral approach to the colored-
noise problem. We then discuss some of the EFPE’s pro-
posed so far under the path-integral framework. Our re-
sults are finally summarized in Sec. VI.

II. AN EFPE: PATH-INTEGRAL METHOD

We derive an EFPE in this section, starting from Egs.
(3) and (4) using the path-integral formalism. We first
rewrite Eq. (4) as

D (x,t)P(x,0)= [[ D[x()]P[x ()]F[x ()]8(x —x (1))
5)
thereby defining

F[x(t)]E fotdtlge_]t—t"/fexp [__ft’tVu(x(u))du

(6)

and_we have used the fact that HD [E(0)IP[&(2)]
=ﬂD [x(£)]P[x(2)]. The path probability P[£(¢)] for
the Ornstein-Uhlenbeck process under consideration over
the time interval (0,?) is given by [24]

P[&(t)]=N exp , (7

—1 t .
p Jodulgw +rEw]

where N is a normalization constant. When x (¢) is relat-
ed to &(¢) through Eq. (2), we have

P[x(t)]=N exp _—_S_’_[I;_c_(_t)_] Je[x (D], (8)
with
S[x(z)]=i—f0'du{(x+V'(x)+f[x+xV"(x)]}2 )

where it is understood that the integrant in Eq. (9) is eval-
uated at the time u. J¢[x (¢)] is the Jacobian of transfor-
mation over the same time interval (0,z) from the &(¢)
realizations to the x (¢) realizations. Sticking to the mid-
point discretization of the paths, J[x (£)] is given by [24]

1 t - "
Jelx(]=exp | > [ Tr'+V"(x(@)ldu | . (10)

We want an approximate formula for D (x,t) from Eq.
(5). In order to do the path integration in Eq. (5), we in-
voke the smallness of D, and apply the steepest-descent
technique [24-27]. In the limit D —O0, the major contri-
bution to the path integral arises around the minimal ac-
tion path (MAP), which minimizes the action S[x (¢)] in
reaching x (¢)=x from x(0). At stationarity, i.e., for
t— o, we take x (0) to be the stable point to whose basin
of attraction x belongs. In other words, we have assumed
that the Brownian particle was at rest at the stable point
(to whose basin of attraction x belongs) for a long time
before an optimal fluctuation takes it to x [28,29]. Since
x (0) is a stable point, the MAP is time-translational in-
variant and so our assumption to let £ — o becomes self-
consistent. The condition minimizing the action is
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8S [x(£)]/8x(¢)=0, and for S[x(¢)] given by Eq. (9) the
MAP is the solution of the nonlinear differential equation
(24],

y2_Vr2=72(2y3yu+y2yr2+2y3V:u_y2V:/2) , (11)

with suitable boundary conditions. In Eq. (11), y
represent x and dashes represent derivatives with respect
to x. In the limit D —0, we take the functional F[x (¢)]
evaluated along the MAP out of the path integral, and
perform the remaining path integral in Eq. (5), which
simply yields P(x,t). We therefore propose the effective
diffusion constant in the small D limit as

D (x,t)=Fyaplx ()], (12)

where Fpap[x(#)] is the functional F[x(t)] evaluated
along the MAP (which minimizes the action involved in
reaching x from the stable point to whose basin of attrac-
tion x belongs).

We now consider the widely discussed case of the bist-
able potential, ¥ (x)=x*/4—x?/2 [30] and compute the
diffusion constant given by Eq. (12). We rewrite Eq. (12)
with Eq. (6) as

D(x,t)=FMAP[X(t)]
— t 12_ — e —1 "
Jlar? exp[ S v andu |

(13)

where x (u) is given by the MAP. As mentioned already
in the discussions following Eq. (10), we let t— o« and
take x(#)=x and, x(¢t'=0)=+1 for 0<x < o, and
x(t'=0)=—1 for —o0o <x<0. Let z(¢t') and w(u),
represents the value of x along the MAP at the time ¢’
and u, respectively. Let y(z) and y (w) represent the ve-
locity variable y along the MAP, defined by Eq. (11) at
the points z and w, respectively. Using the relation
y(z)=dz(t')/dt' and y(w)=dw(u)/du we change the
time variables ¢’ and u into space variables z and w, re-
spectively, and rewrite Eq. (13) as

Dpx)=[*-%£D

X1 o dw
172 _ exp fz[T +V(w)]—y(w) ,

(14)

where y (z) and y (w) are given by the solution of Eq. (11).
Equation (14) gives the effective diffusion constant for the
bistable potential driven by the Ornstein-Uhlenbeck
noise. The similarity between the diffusion constant
given by Eq. (14) and that given by LLT [18] is that both
remain non-negative for all x and 7, the difference being
that the diffusion constant of LLT is nonlocal in time
(i.e., it involves a time integral), but local in space,
whereas the D (x) given by Eq. (14) is local in time, but
nonlocal in space (i.e., it involves a spatial integral).

We now categorize the various approximation schemes
that have been proposed to solve the nonlinear non-
Markovian process and thereby see where our approxi-
mation scheme fits in the categorization. It is well known
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that the formal evolution equation of the nonlinear non-
Markovian (NLNM) process is in general nonlocal in
both time and space [5]. Whereas for a nonlinear Mar-
kov process we have a Fokker-Planck equation, for a
linear non-Markov process we have a Fokker-Planck type
equation which is local in space and time with a time-
dependent diffusion constant. It can be seen that all at-
tempts to approximately solve the NLNM process should
either invoke a linearization and/or Markovianization
scheme. Two ways of invoking linearization are as fol-
lows.

(1) Approximating the potential by a harmonic poten-
tial locally [18] or only at the turning points of the poten-
tial [9]. Because LLT does a local linearization but re-
tains the non-Markovian nature of the x process, the
resultant process is a linear non-Markovian process and
hence LLT’s EFPE has a time-dependent diffusion con-
stant.

(2) Invoking the limit D —0, in which case the mean-
square displacement of the Brownian particle within one
noise correlation time is so less that we can assume the
potential to be effectively harmonic over the state space
explored by the Brownian particle within one noise corre-
lation time. The small D assumption has been invoked
under different formalisms, the path-integral method
[25,24], the WKB approximation [31], and the steepest-
descent method [32].

Schemes invoking Markovianization either take the
limit 7—0 [8,13,16] or 7— o [18,33-36]; former being
the off-white—noise case, while the latter makes the noise
deterministic and hence the solution process x Markovi-
an (Chap. III of [37]). Under the above categorization
scheme, it can be identified that the approximation in-
voked to derive Eq. (14) is a Markovianization scheme, as
it is assumed that the noise realizations are deterministic
and always follow the MAP in the limit D —0. Note that
in contrast to LLT, we do Markovianization but retain
the full nonlinearity; hence the occurrence of many spa-
tial derivatives of V' (x) in D (x) [see Eqgs. (14), (15), and
(19)].

On comparing the LLT and our approach, with that of
the BFPE and Fox’s EFPE the reason for the negative
diffusion constant anomaly becomes clear. The BFPE
and the Fox’s EFPE arrive at diffusion constants which
are local in both time and space. Such diffusion constants
show the negative diffusion constant anomaly when either
the nonlinearity or non-Markovicity or their combination
in some suitably defined sense crosses some threshold
[r=1/V"(x)]. On the other hand, schemes which advo-
cate (a) a time-nonlocal diffusion constant (LLT) or (b) a
space-nonlocal diffusion constant [Egs. (3), and (14)] do
not break down, though they become inaccurate outside
their domain of validity. Also note that schemes that are
currently popular, namely, the path-integral method [24]
and the WKB approximation [31], also arrive at results
which are nonlocal in space. The spatial integral mani-
fests itself in the form of the occurrence of infinite spatial
derivatives in their results.

On reconsidering the above-mentioned categorization
scheme, it becomes apparent that a clear categorization
of an approximation scheme as either a linearization or a



Markovianization scheme is spurious. In fact the path-
integral technique invoking the D —0 limit [24] can also
be viewed as a Markovianization scheme as it assumes
the realizations of x to be deterministic (MAP). Also,
usage of a linearization or Markovianization method may
either give rise to a diffusion constant which is nonlocal
in time or nonlocal in space as these two are interconver-
tible [see Egs. (13) and (14)].

Finally it is also clear, that there is no superiority of
one formalism compared to another (say, path integral
compared to EFPE), but it is the approximation scheme
one invokes that matters. That this is true, even for
deriving the EFPE’s, has been shown already [38].

III. MEAN FIRST PASSAGE TIME COMPUTATION
FOR THE BISTABLE POTENTIAL

We compute in this section the MFPT for the bistable
potential. For general 7, one has to solve Eq. (11) numer-
ically to get the MAP, then compute the functional
Fyap[x (£)]=D (x), and substitute it in Eq. (16) for com-
puting T',,. Rather, we use the approximate formula for
the MAP in the asymptotic limits of small and large 7,
and compute the diffusion constant and the MFPT in
these limits only.

A. MFPT in the small 7 limit

In the case of white noise (7=0), the MAP is given by
y =1 V'(x) [24,28]. Note that for the initial point of the
MAP, x(t=0)==1, the sign of y which is physically
relevant (y <0 for —0o <x<—1,0=x=+1 and y =0
for 1<x <+ o, —1=<x =<0) coincides with the sign of
V'(x) for (— o <x <+ ). Therefore, we set y =FV"'(x)
in Eq. (14) in the white-noise limit. We have computed
the diffusion constant given by Eq. (14), with the white-
noise MAP for small values of 7. The resultant diffusion
constant is found to be equal to D for all x, thus proving
the correctness of Eq. (14) in the white-noise limit.

In the small-7 limit, an approximate solution for the
MAP has been derived by Bray and co-workers [24] as
follows. y is first expanded in powers of 72 and then sub-
stituted in Eq. (11). Then, on equating equal powers of 7
in Eq. (11), Bray and co-workers get the small-r MAP.
The small-r MAP starting at x = —1, and ending at an x
lying in between —1 and O (called the uphill MAP) is
given by [24]

y= V/+2T2V72Vul+7_4( 14V13V1112+8V12VNZV111
+10V13V1:Vuu+2V:4Vunr) .
(15)

Again using the coincidence of the sign of y along the
MAP starting at +1, with that of V’'(x), it can be seen
that Eq. (15) is the valid MAP for — o <x <+ o in the
small-7 limit.

We have computed D (x) by solving Eq. (14) numeri-
cally, with y (z) and y (w) given by Eq. (15). We comput-
ed D(x) in the range —3 <x =< +3 for various values of
D and for 0.05=<7=0.5. The following were noticed
with regard to the value of D(x) computed using Eq.

48 EFFECTIVE FOKKER-PLANCK EQUATION: PATH-INTEGRAL... 2405

(14). (1) We found that D(x =+1/V3)~D, for all
values of D and 7 considered (0.05=<7=0.5). (2) D(x)is
found to decrease as x moves towards the bottom of the
positive or negative well, while D (x) increases as x moves
towards the barrier top. (3) Further, the rate at which
D(x) changes as x moves away from x =+1/V3 in-
creases with 7. (4) For 7<0.5, the rate at which D (x)
changes is always greater than the rate at which Dy, (x)
changes.

Note that if x is varied from x ==%1 to x =0, the rela-
tive change in our D (x) [given by Egs. (14) and (15)] is
larger than the relative change in Dg,,(x). Larger rela-
tive change in our D (x) compared to Dg,,(x) results in
larger values of T, computed using our D (x), compared
to the Ty,, of Fox’s EFPE. For values of 7 close to 1,
Dy, (x) diverges to infinity at the barrier top. Therefore
comparison between the Dg,, (x) and our D (x) is not car-
ried out. The reason for getting D(x)=D at the
inflection points (x =+1/v'3) of the potential is as fol-
lows. The potential becomes almost linear at
x =%x1/V'3; V" (x) vanishes, but V""'(x), and V"""’(x) do
not. If we invoke a linearization scheme, the diffusion
process becomes locally a linear non-Markovian process
with the diffusion constant Dy;r(x), proposed by the
LLT [18]. At stationarity, Dpy1(x) becomes Dg, (x).
As Dg, (x) coincides with D for all 7 at x =%1/V'3, we
conclude that our approximation agrees with the approx-
imation of LLT for small values of 7. However, as 7 in-
creases, the linearization procedure becomes invalid for
the following reason. Let us suppose we analytically find
D(x) in Eq. (14). D(x) will then have terms like
V''(x)r% V''"(x)r® and so on, where a, b, etc., are in-
tegers greater than 1. The V'"(x)r V""(x)rb, and
higher-order terms contribute non-negligible corrections
to Dpy,(x) at x =x1/v3. Hence the linearization
scheme breaks down for large 7. Indeed for
7>1,D(x =%1/V'3) computed using Egs. (14) and (19)
is quite different from D. Also for 7> 1, we find D (x) to
increase monotonically as x is changed from *+1 to 0.

The MFPT T, for x to go from the bottom of one
well to the barrier top of the bistable potential, is com-
puted using Stratonovich’s formula [27],

_ 0 dx x
Tmp—f_l————D(x)Ps(x) J7 P (16)

In order to do numerical integration we have truncated
the range of the inner integral in Eq. (16) to (—3 =<y <x).
The error introduced due to this truncation is very small.
P,(x) in Eq. (16) is the stationary probability density
function of x,

fx —V'(z)dz 17)

P, (x)= D(2)

D(x) €xXp

In Figs. 1, 2, and 3, we compare our results for Tmp, and
Tyo =2T,,, with the theoretical results of Fox [16],
Klosek-Dygas, Matkowsky, and Schuss [31], and Bray
and co-workers [24], and with the numerical simulation
results of Mannella, Palleschi, and Grigolini [39]. As the
MPFPT of LLT coincides with that of Fox’s EFPE in the
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FIG. 1. T, as a function of 7 for D =0.1. The solid line
represents T, of Ref. [39]. The dashed line represents T\, of
Ref. [19(a)]. The symbols are theoretical predictions; solid cir-
cles: Egs. (16) with (14) and (15); pluses: path-integral method
(Ref. [24]); open circles: Fox’s EFPE (Ref. [16]); crosses: singu-
lar perturbation method (Ref. [31]).

small-7 regime [19], conclusions drawn on comparing our
results with that of Fox’s EFPE are also applicable for
LLT. In Fig. 1, we have also plotted T, computed us-
ing the matrix continued fraction (MCF) by Jung, Hang-
gi, and Marchesoni [19]. Note in Fig. 1 that the numeri-
cal simulation results [39] and the MCEF results [19] differ
considerably. From Fig. 1 we notice that our results
agree with the MCF results better than other theories
(only) for 7<0.3. However, we note in Figs. 1-3 that
our results agree with the numerical simulation results
better than the results of Fox’s EFPE and that of singular
perturbation method [31]. Surprisingly our results also
agree with the simulation results better than the results of
Bray and co-workers [24]. Note that Ref. [24] is also
based on the path-integral method as is the case of our
approach. Further Bray and co-workers use the MAP
correct to O (7*) as we do, but avoid the Fokker-Planck
approach for computing the MFPT. Note that the pre-
factor of the escape rate is computed in Ref. [24] by do-
ing a Gaussian integration around the MAP, which is
valid only in the small-D limit. Further, the escape rate
is equated to the conditional probability

400 -

300

ot

0.06 0.08 0.1 0.12 0.14
D

FIG. 2. Ty, as a function of D for 7=0.1. The solid line
represents T, of Ref. [39]. The symbols are theoretical predic-
tions; solid circles: Egs. (16) with (14) and (15); pluses: path-
integral method (Ref. [24]); open circles: Fox’s EFPE (Ref.
[16]); crosses: singular perturbation method (Ref. [31]).
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FIG. 3. Ty, as a function of D for 7=0.1. The solid line
represent T, of Ref. [39]. The symbols are theoretical predic-
tions; solid circles: Eqgs. (16) with (14) and (15); pluses: path-
integral method (Ref. [24]); open circles: Fox’s EFPE (Ref.
[16]); crosses: singular perturbation method (Ref. [31]).

P(+1,T/2|—1,—T/2) in the limit T— « (however, see
Ref. [40] for the correct computation of the prefactor
wherein the boundary terms in case of finite time inter-
vals are taken into consideration), whereas in the case of
Eq. (5), once Fyup is taken out of the path integral in Eq.
(5) (which is of course valid only in the limit D —0), the
remaining path integral can be done exactly which simply
yields P(x,t). Also we use the exact formula for the T',,.
Probably this factor might account for the better accura-
cy of our results compared to that of Ref. [24]. See in
Fig. 2 the excellent agreement of our results (in general
all theoretical predictions) with the simulation results for
T,.. But also notice in Fig. 3 a comparatively poor
agreement between T, of the theories with the numeri-
cal simulation results. All theories under discussion (ex-
cept Ref. [31]) compute only T, and predict T\, as
2T,,,- However, the quantity of relevance at finite 7 is
Typ=5Tpor, Where T, is the MFPT to reach the
separatrix curve of the (x,&) space from one of the meta-
stable points [41]. In general T\, =aT,,, where a=2
for 7=0, a=1 for 7—> o and 1 <a =2, at finite 7 [41] (see
also Fig. 4 of Ref. [34]). All theories underestimate T,
as shown in Fig. 3, but their 2T, just happen to coin-
cide exactly with T, almost compensating for the de-
crease in a for 7=0. 1.

B. MFPT in the large-7 limit

To get the MAP in the large 7 limit, we closely follow
Ref. [24]. First we rescale the time ¢ —7t, and therefore
y —y /7. With this scaling Eq. (11) becomes

2 3,1 2,12 3y e 2y112
Y _yn__ ny +ny4 L Z’ _yv

72 T T T 7

(18)

Retaining only O (7°) terms in Eq. (18) we see that the
physically relevant MAP is y=V'/|V”| for
(— o <x < + o), derived already in Ref. [24]. However,
this MAP is valid only for 7— o, and for finite 7 it be-
comes invalid as V"' (x) vanishes at the inflection points
of the potential. On retaining terms up to O (7~ !) in Eq.
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(18) we have

L y3_VH2y2+ V:Z____O . (19)

Equation (19) has been solved for the MAP, and y is then
rescaled as y /7—y to get back to the original time scale.
Due to this rescaling the MFPT computed by us is al-
ready in the original time scale. The diffusion constant is
computed using Eq. (14) with y(z), and y (w) from the
solution of Eq. (19) for different values of D with
2=<7=10 for —3=x <0. The diffusion constant remains
positive for all values of D and 7 considered. We note
that our EFPE results in a positive definite diffusion con-
stant and a positive definite SPDF for all x and 7. This
fact allows us to use Eq. (16) for computing the T, even
in the large but finite-r limit. The MFPT T, is then
computed as in the small-7 case using Eqgs. (16) and (17).
Figure 4, gives the comparison between the T,,, ob-
tained as above with the numerical simulation results of
Ref. [39]. We find that the T, computed using Eq. (16)
overestimates the simulation results; more is the overes-
timation in the limit 7/D— . We now analyze the
reason for the same. When we contract the two-
dimensional Markovian dynamics of the (x,£) process
onto a one-dimensional approximate dynamics of x, the
separatrix of the two-dimensional MFPT problem does
not get projected onto a single point on the x axis. In-
stead the separatrix gets projected onto the region
—1/V3<x < +1/V'3, with an unknown probability dis-
tribution. Only in the limit D —0 with either 7—0 or
7— o0, the probability distribution of the separatrix be-
comes peaked at a point on x axis (x =0, in the 7—0,
and at x =+1/V/3, in the 7— o case). The distribution
of the separatrix is unknown in the finite-7 limit. Compu-
tation of MFPT to reach a boundary with a probability
distribution defined on it is not known. Hence the EFPE
formalism is not valid for computing the MFPT at finite
7. Note that in the computation of T, the separatrix is
assumed to be at the point x =0. Therefore, our T,
overestimates the numerical simulation results of Man-
nella, Palleschi, and Grigolini.
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FIG. 4. Ty, as a function of 7 for various D. Solid lines are
results of Ref. [39]. From top to bottom lines represent
D =0.15, D =0.2, and D =0.3. The symbols are results of Egs.
(16) with (14) and (19); squares (D =0.15), open circles
(D =0.2), and solid circles (D =0.3).
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We further substantiate the distribution of the separa-
trix in the region —1/v3<x <+1/V3. Note that the
separatrix gets projected onto the points x ==+1/V3 for
(1/D)— oo. This fact inspired us to compute the MFPT
of x from —1 to —1/V'3, by setting to —1/V3 the
upper limit of the integral over x in Eq. (16). We denote
the MFPT from —1 to —1/V3 as T—l/\/S' Noting the
nature of the distribution of the separatrix, we expect
T_,, 5 to underestimate the T,, of the simulation re-
sults at finite 7. We have computed T_, Wi for
2=7=10. T_, 5 is compared against the T\, of Man-
nella, Palleschi, and Grigolini [39] in Fig. 5.

Supporting our expectation, we notice in Fig. 5 that
T_, 5 underestimates the T, of the simulation results.
We point out the similarity between the underestimation
exhibited by our 7'_ V3 and the underestimation shown
by T'_, 5 of the UCNA scheme [42]. Notice in Figs. 10
and 11 that the SPDF in the |x| <1/V/3 region is vanish-
ingly small. It is well known that the tails of the SPDF
are the major contributor to the MFPT. Total negligence
of the region —1/v'3<x <0, while computing T_,,.;
by us, and by the UCNA scheme, has resulted in the un-
derestimation of the MFPT by us and by the UCNA
scheme on comparing both with the simulation results.

Notice that computation of T'_, 5 is analogous to the
assumption made by the fluctuating potential theory
(FPT) for computing T, [18], the reason being the FPT
theory assumes that the transition to the other well is im-
mediate once x reaches +1/V'3. Also notice that both
Ty of the FPT and T _, ,, 5 of our EFPE formalism un-
derestimate T, of the simulation results, at finite 7. The
following modifications have been made on the FPT to
overcome the underestimation of T, by the FPT at
finite 7, (a) by de la Rubia er al. [33], (b) by Ramirez-
Piscina et al. [34], and (c) by us [35,36]. Recall that the
total negligence of the region —1/v'3 <x <0 while com-
puting T'_, 5 is responsible for the underestimation ex-
hibited by T_, 5. Therefore the contributions to the
MFPT, by the SPDF in the region —1/v'3<x <0 under

10* b -

3 " -
- _— - n///
10° '//,/// ° .
10" $—— .
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FIG. 5. T_,,; of our results compared with T, of Ref.
[39] for various 7 and D. Solid lines are T, of Ref. [39]. From
top to bottom solid lines represent D =0.15, D =0.2, and
D =0.3. Symbols are T'_, ,, 5 of our results [using Egs. (14) and
(19)]; squares (D =0.15), open circles: (D =0.2), and solid cir-
cles (D =0.3).
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the EFPE formalism, is analogous to the corrections pro-
posed to the FPT.

Using the above-mentioned analogy between the EFPE
formalism and the FPT, we analyze the separatrix issue.
We notice that the FPT becomes valid in the region
—V(r—1)/37<x <0 [35]. Hence at finite 7, we can as-
sume the transition to take place once x reaches
—V/(1—1)/37. Therefore we are led to believe that the
MFPT from —1 to —V/(r—1)/37 might capture the
effective projection of the separatrix. Also note that one
can _safely compute the MFPT from —1 to
—V(r—1)/37, even by the UCNA scheme, and by the
Fox’s EFPE method. We have computed T,,, using Eq.
(16) with this modification. Though there is a slight im-
provement in the coincidence with the numerical simula-
tion results, the underestimation persists. Probably in the
limit D —0, one can expect the MFPT from —1 to
—V/(r—1)/37 to coincide with T\,. We thus conclude
that it is not easy (possible) to find out an effective point
of projection of the separatrix curve onto the x axis and
use it in the EFPE formalism to compute MFPT.

IV. THE STATIONARY PROBABILITY
DENSITY FUNCTION

The SPDF given by Eq. (17) has been computed and it
is shown in Figs. 6 and 7 for 7<0.5. The behavior of the
SPDF with a change in D or 7 is in qualitative agreement
with the conclusions drawn from the analog simulation
[43] and from the MCF method [10]. In Fig. 8 we have
compared the SPDF for 7=0.2 and 0.4 with the MCF re-
sults of Ref. [3]. While plotting Fig. 8, we have adjusted
the peak value of our SPDF to coincide with the SPDF
curve of the MCF result. Figure 8 shows that our SPDF
coincides well with the MCF results (but for the normali-
zation constant). A similar close coincide with the SPDF
of the MCEF result is also exhibited by the UCNA scheme
[3]. Figure 9 shows the SPDF for 2 <7<10 with D =0.1
in the vicinity of the bottom of the positive well. For
large 7, the SPDF is highly peaked and is concentrated
over a very narrow region around the stable points *1.
The SPDF is nonzero, but becomes vanishingly small

15

SPDF

FIG. 6. The SPDF computed using Eq. (17) for various D at
7=0.1.

15

SPDF

0
X

FIG. 7. The SPDF computed using Eq. (17) for various 7 at
D =0.1.

SPDF

05 r

FIG. 8. The SPDF of our results computed using Eq. (17)
(dashed lines) compared with the MCF results of Ref. [3] (solid
lines) for 7=0.2, 0.4, with D =0.1.
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FIG. 9. The SPDF computed using Eq. (17) for various 7 at
D =0.1. The SPDF is plotted only in the vicinity of the bottom
of the positive well.
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FIG. 10. The SPDF computed using Eq. (17) for various 7 at
D =0.1 plotted in the logarithmic scale.

with an increase in 7, at the barrier top. This is shown in
Fig. 10.

The above-mentioned behavior of the one-dimensional
SPDF of the x process is closely related to the analog
simulation results of the two-dimensional SPDF of the
(x,&) process [44,45]. The two-dimensional SPDF of the
(x,&) process shows a complex topological change with
an increase in 7. It has been pointed out that the topolog-
ical changes induced by the color of the noise might have
some effect on the choice of the integration path used in
Sec. II [46].

In Fig. 11 the SPDF computed by us is compared with
the SPDF obtained through the MCF method [19]. We
point out that for large 7 the value of the SPDF at the
barrier top (and also at the bottom of the wells) is highly
sensitive to the exactness of the theoretical and the nu-
merical computation employed in arriving it. Due to this
factor we could only get a fair agreement between our
SPDF and the exact SPDF of the MCF method. In con-
trast to the conclusion drawn in Ref. [24] (but in agree-

5
0
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[a]
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-10 b .
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X
FIG. 11. Natural logarithm of SPDF computed using Eq.

(17) (solid line) for 7=3.33 and D =0.1 is compared against the
MCEF results of Ref. [19(a)] (solid circles).

2409

ment with the MCF results [19]) we do not see any pla-
teau in the SPDF [and therefore in the action,
—D InP,(x)] for large 7, around x =0.

V. RELATION BETWEEN THE
FUNCTIONAL-CALCULUS FORMALISM
AND THE PATH-INTEGRAL APPROACH

It has been pointed out that there is an intimate con-
nection between the functional-calculus formalism and
the path-integral method [16]. We substantiate this state-
ment in this section and thereby analyze the various
EFPE’s under the path-integral framework. First we
show that the Jacobian of transformation from the x real-
izations to the corresponding £ realizations connected
through Eq. (1) can be represented in terms of the
response function, &x (¢)/8&(¢’).

Consider Eq. (1). Let x(z) and £&(¢) represent the
values of x and £ at the time ¢, and let x[¢] and &[¢]
represent the entire realization of x and & over the time
interval (— o <t <+ o). The physical interpretation of
the Jacobian of transformation goes like this [47]. Every
noise realization on the interval (— o <f< o) gets
mapped onto a unique realization of x through the rela-
tion defined by Eq. (1). Consider an infinitesimally small
tube enclosing a noise realization £[t]. All noise realiza-
tions within this tube get mapped onto x realizations
which are close by and form another tube in the space of
x. The Jacobian 6x [¢]/8&[¢] is then defined as the ratio
of the volume of the tube in the x space to the volume of
the tube in the £ space enclosing the noise realization
£[t], in the limit the volume of both the tubes tend to
zero. In other words, Jacobian is the derivative of the x
realization, x [¢#] with respect to the noise realization £[¢].
The derivative of x [¢] with respect to &[¢] can be defined
as the total change in x[#] [i.e., the sum of changes at
x(t); —oo <t<oo] due to infinitesimal unit perturba-
tions at all points in the £[#]. Symbolically we then write
the Jacobian as

Ox[t] _ 8x (s)
st i S T wery) - oE )
(20)
which can be written in a compact notation as
Sx[t] _ t (s)
21
8&[¢] 8§ (u) ’ @D

where 8x (s)/8&(u) is the functional derivative of the
functional x (s) with respect to £(u), which is more com-
monly called the response function. By definition, we
have got Eq. (21) relating the Jacobian and the response
function. Instead the Jacobian is usually derived by
discretizing the x and £ paths, and writing the Jacobian
as the determinant value of an infinite-dimensional ma-
trix [26,27,48]. By taking the continuum limit of this ma-
trix, one can arrive at Eq. (21). We prove Eq. (21), rath-
er, by deriving the Jacobian from the response function.
Our derivation is somewhat analogous to the method out-
lined in Ref. [48].

The response function &x (s)/8&(u) for Eq. (1) has been
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derived to be [3,7,8]
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—&(x (u)O(s —w exp | [dv(f(x () +g'(x w)EW)] | . 22)

Here O represents the unit-step function; ©(¢)=0 for t <0 and ©(¢)=1 for ¢t 2 0. Substituting Eq. (22) into Eq. (21), we

6x (s)
6&(u)
have
Bxlt] e B
5[] f,wdsgdug(x(u))e(s u) exp

Llav{f'(x)+g'(xw)EW) | {23)

Noting that ©(s —u)=0, for s <u, and due to the presence of [~ ,du, we find that the nonzero contribution to the in-
tegral over s, in Eq. (23) comes only for s =+ «. With this simplification we have

%= I du gt exp [ [ "dv(£/(x ) +g'tx 0)EW] | - 24)
Splitting the product in Eq. (24) into a product over g(x (u)) multiplied by the product over exp[ - - - ], and using the
relation [[ =exp[ f ]In, we have

%z_%=exp J7 dumlgen] | [exp [ dun|exp [ [ "do s e +g'x o0gw) | 25)
Simplifying, we have

Ox[t] _ e ® @ ' 4o’ 26

——8§[t] P f_wdu In|g(x (u))| | exp [f_wdu fu dv{f'(x(v))+g (x(v))é‘(v)}] s (26)
which on further simplification becomes

?Sz_—[[:]]=exp fﬁw du In|g(x (u))| | exp %f_w dv{f’(x(v))—!—g’(x(v))é‘(v)}] . 27)

Equation (27) coincides with the Jacobian derived in Ref. [26].

Further, we show that the formal effective diffusion function given by Eq. (5) can be written in terms of J e[x(2)], the
Jacobian of transformation from the £(¢) realizations to the x (z) realizations. Let J ¢[x,(¢',2)] be the Jacobian of trans-
formation from £(#) to x (¢) over the time interval (¢',). We now write Eq. (5), with F[x (¢)], given in the form of Eq.

(13) as

D(x,t)P(x,t)=ﬂD[x(t)]P[x(t)]fotdt’—f—Jg[x,(t’,t)]_ZS(x(t)—x) : (28)

The representation of the D (x,¢), in terms of the Jacobi-
an of transformation, gives us more insight into the nega-
tive diffusion phenomenon. We discuss this in the follow-
ing. From Eq. (28) we see that if more probability is as-
signed to a x realization, for which the Jacobian is van-
ishingly small, the diffusion constant will tend to infinity.
With this in mind let us analyze the diffusion constant
proposed by Fox. Dg,(x) can be got by evaluating
F[x(t)] [given by Eq. (6)] using x(u)=x(¢t), 0<u <t.
Therefore, from Eq. (12) we see that the assumption un-
derlying Fox’s approximation is that the most probable
realization among the x realizations reaching the point x
is x (u)=x(¢), 0=<u =t. If and only if x is a stable point,
the noise realization corresponding to the x realization
x(u)=x(t)=x,0=u =t,is £(u)=0, 0=u <t, and hence
both x and £ realizations become most probable, making
Dpox(x) exact. If x is not a stable point, D, (x) becomes
inaccurate. In particular, if x is in the region where
[+ !4+ P"(x)] <0, the Jacobian [Eq. (10)], tends to zero
as t—oo for x(u)=x(t)=x, 0=u <t, and s0 Dgy,(x)
tends to infinity in these region. Without letting ¢t — o,
one gets the approximation of LLT.

The fact that Fox’s approximation becomes exact when
x is a stable point is the one responsible for the Dy, (x)

[
to become exact for 7— oo [49]. In the case of large 7, x
is always found in the instantaneous potential minima.
Further, the minima itself changes in a time of O (7).
Hence the assumption x (#)=x(¢), 0=<t'<t of Fox be-
comes valid in Egs. (5) and (6) for t <¢'<t—7, which is
the majority contributor for D, (x).

Let us now analyze the effective diffusion constant of
the BFPE. BFPE proposes the diffusion constant correct
to O (D) to be [8,13]

DBFPE(X)=Df—(;Cl

g(x)

(29)

d
1+7f(x) dx

In Ref. [38] it has been shown that Dgppp(x) can be de-
rived from Eq. (5) by considering only the deterministic
path x(z)=f(x(¢)), with x(¢)=x, and with x(0)=x,,
where x is the stable point to whose basin of attraction x
belongs. In the light of the path-integral approach to
EFPE, it can be easily seen that Ref. [38] indeed shows
that if the MAP is taken as the deterministic path,
X ()= f(x (1)) with x (0)=x, and x (¢)=x, then one ar-
rives at Dgppp(x). But note that the path x(#)=f(x(t))
with x (0)=x, and x(#)=x is not a valid deterministic
path because x (¢) cannot leave its initial stable position
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xo due to deterministic force. Instead if we consider the
path x(#)=—f(x(2)), with x(0)=x, and x (¢)=x, fol-
lowing Ref. [38], it can be shown that this path also leads
to Dgppe(x) with the same positivity requirement on the
function A (x,7) given by Eq. (2.20) of Ref. [38]. In fact
the path x(¢)=— f(x(2)), is the so-called antideterminis-
tic path or MAP of x driven by white noise [28,40]. For
the white noise 7(¢) driving additively Eq. (1), the MAP
is (¢)=—2f(x(¢)) which leads to the MAP of x as
x(t)=—f(x(¢t)). Therefore, it becomes clear that BFPE
proposes for all 7 the diffusion constant given by Eq. (12)
with the MAP of x driven by the white noise itself.

It can be seen that the action involved in reaching the
point x =0 from x ==1 is least only if x(¢#)=—f(x(2)),
which means that the noise realization should be
—2f(x(t)). Note that the white noise can take indepen-
dent values at distinct time instants, however, close the
time instants may be. Therefore, whatever may be the
nature of the potential, the MAP of the white noise is al-
ways —2f(x(z)). Hence the action and the MFPT is
minimal in the white-noise case. However, if the noise
has finite correlation time, their trajectories are not as
flexible as the white-noise trajectories so as to mold them-
selves to the nature of the potential. Hence the path
—2f(x(¢)) no more corresponds to the least action for a
colored noise. This is reflected by the presence of the
term 7£(t) in the action. Especially in the region where
the inverse of the time scale of evolution of £(¢) [which is
of O(r71)], is less than f’(x(¢)) [which is proportional
to the derivative of the path —2f(x(¢))], the usage of
white-noise MAP for computing the effective diffusion
constant at finite 7 proposed by the BFPE breaks down.
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VI. CONCLUSIONS

We will summarize the main points of this paper. An
EFPE for a nonlinear non-Markovian stochastic process
is derived using the path-integral method. The proposed
EFPE is local in space and time, and its diffusion con-
stant remains positive for all 7 at all x. Both LLT and
our approach propose non-negative SPDF of x for all 7,
but this is achieved only at the cost of increase in the
overhead involved in computing the diffusion constant.
The intrinsic complexity associated with the nonlinear
non-Markovian problem demands this overhead, if one
wants an EFPE which does not break down. However, in
contrast with the LLT, but in agreement with the MCF
results [19], the SPDF computed through our scheme
does not vanish at the barrier top for large 7. An attempt
is made to categorize various approaches proposed to
solve the nonlinear non-Markovian process. The MFPT
for the case of bistable potential driven by Ornstein-
Uhlenbeck noise is computed and compared with that of
earlier theories, MCF, and numerical simulation results.
It is found that all theories underestimate T, in the
small but finite-7 regime. In the case of large but finite 7,
the proposed EFPE gives a good estimate for the SPDF.
We show that the EFPE formalism is invalid for comput-
ing the MFPT at finite 7 as the separatrix for the one-
dimensional MFPT problem is unknown for finite 7. In-
teresting relations between the path-integral formalism
and the functional-calculus approach are brought out.
The Jacobian of transformation from the x realization to
the noise realization is derived in terms of the response
function. The Fox’s EFPE and the BFPE are analyzed
under the path-integral framework.
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